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1. BASIC DEFINITIONS AND AIMS 

In the literature of survey sampling diverse 
problems of optimal allocation are treated sepa- 
rately. Yet they can usefully be viewed as dis- 
tinct examples of the same simple expressions for 
the total variance and cost of the sample statis- 
tic ÿ: 

Var(y) = V + V 
o 

EV /m. + V 
o 

(1.1) 

and Cost(y) = C + C 
o 

= + C_ . (1.2) 

These linear forms occur in stratified, mul- 
tistage and multiphase sampling, and other rela- 
ted techniques. Of several applications in Sec- 
tion 7, consider two specific examples. (a) For 
a stratified sample of elements the variance of 
the mean = EWiyi is: 

Vary) = 
2 

/ml 
- 

where and S2 are respectively the sam- 
ple and population sizes, weights and element var- 
iances of the ith stratum. The first term, V, 
depends on the allocation of the m.; the second, 
V does not. (b) For two -stage random sub - 
selection of b from B elements from each of a 
random selections of A clusters, the variance of 
the mean is: 

Vary) = (1 - a /A)S /a + (1 - b /ab 

= /a + S/ab - /A. 

Here Su = - S2/E; V comprises the first two 

terms, with a and ab; the last term 
2 

-Sa /A = Vo does not depend on the mi. The cost is 

caa + cbab + Co. 

Definitions and restrictions seem desirable 
here. 

(1) The statistic denotes an estimate of 
a mean or of an aggregate. Possible extensions to 
other estimates are not attempted here. 

(2) The ith component of the variance, 

Vi /mi, denotes a constant Vi in the design, a 

unit variance, divided by the number of sam- 
pling units for that component. We prefer V2 to 
V 
i 

to denote unit variances that are commonly 
dfined with squared values. 

(3) The ith component of cost, cirri, denotes 

the unit cost ci multiplied by the same number mi 

of units as in (2). 
(4) Components may refer to strata or stages 

or phases of sampling: generality is the essence 
of our approach. Components here represent 
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additive sources of variation and cost. 

(5) The constants and c are par- 
ameters for which values are assud or guessed 
for numerical solutions of allocation problems. 

We take Vi>O and V (hence Vi and ci) for al- 

locating the mi. For nontrivality two pairs at 

least of the Vi and ci should be positive. 

Negative values of Vi may be encountered, as 

with above; we then redefine the problem to 

facilitate a practical solution; for an example 
see Section 7C. 

(6) The constants Vo and Co do not affect 

optimal allocations of the mi; their effects on 

losses in proximal allocation are shown in 
Section 3. Co is nonnegative, but V 

o 
is often 

negative, as above. 
(7) For practical values of mi we want 

positive integers. Also 0 <mi <Mi, where Mi 

denotes the number of units in the population for 
the component; and mi >2 for computing variance 

components. Frequently allocation formulas 

yield some optimal values of mi >Mi; when these 

are reset to mi = Mi the other optimal values of 

mi <Mi can be recomputed with (5.4 - 5.5). 

(8) It would seem more realistic to guess 

distributions for Vi and c1,rather than single 

values, and a Bayesian treatment of design will 
probably be worthwhile. But that is beyond our 
scope here, and I dread a complex procedure out 
of the reach of survey practitioners. Further- 
more, its relative losses would probably not 
differ much from ours, because losses are in- 
sensitive to moderate departures from the 
guesses. 

(9) In some applications, especially for 

some stratified samples, differences between 
the are disregarded. Hence, the cost con - 

straint becomes C/c = m = Then the 

should be omitted from the allocation formulas. 
Instead of Co use Co /c, where c is a common 

(average) unit cost. 

(10) This last point calls attention to 

the dimensional (unit) homogeneity of all the 
formulas. * 

To find optimal values °Vi for 
the mi we minimize the product 

VC (EVi /mi) (Ecmi) (1.3) 

when either V or C is fixed at Vf or Cf. This 

results in the same optimal values as 

Vary) x Costly) (V + Vo) (C + Co), 



because in (V + Vo)Cf or in Vf(C + Co) the second 

terms are unaffected by optimal allocation; their 
effects on proxima are more easily treated separ- 

ately (Section 3). To use the product VC rather 
than some other function seems reasonable: An 
increase (or decrease) in cost by some factor 
should be equivalent to a decrease (or increase) 
in variance by the same factor. The product form 
leads directly to expressions for loss functions 
(1 + L) and relative losses (L) that are our goals 
here. For brevity I use "loss" for L that repre- 
sents relative increase of variance or cost, 
without limits. 

Our principal aim goes beyond optimization 
of linear forms, to a simple and coherent treat- 
ment of their proximization. We provide conven- 
ient forms, in terms of useful parameters, for 
relative losses incurred by proxima achieved with 
proximal allocations. 

For statisticians "The perfect is the enemy 
of the good" (proximized from Voltaire). Con- 
flict appears frequently; optimization for one 
convenient variable often usurps the place of 
proximization for multipurpose allocation. Proxi- 
mal methods are seen to be particularly adaptable 
to multipurpose allocation in Sections 6 and 7F, 

and fulfill our second aim. 

Third, we also present Section 5, a compact, 
simple and general formulation of optimal alloca- 
tions for diverse sampling methods. Instead of 
solving each separately, we merely substitute ap- 
propriate symbols for the optimal values 

/11E-. This is obtained with the simple 
Cauchy inequality. This unified and simple treat- 
ment has heuristic and pedagogic merit. Applica- 
tions in Section 7 cover the diversity of sampling 
methods. Sections 2 and 3 develop methods of 
proximization, and Section 4 contains convenient 
tables for relative losses L. 

2. GENERAL FORMULATION 

Our principal result (2.3) expresses the 

relative loss (L) in two parameters: Ui, the rela- 

tive "sizes" of the components; and 

the relative departures of the sample sizes from 
optimal allocations mi. First (2.1), the product 

.VC to be minimized is divided by (EV )2; this 
ratio will be shown to have minimal toptimal) 
value of 1. It expresses the relative loss L. for 

any allocation of the mi ( >0), by compensating for 

the units of measurement of the and c1. Next 

(2.2) the m 
i 

are stated in terms of relative de- 
* 

partures kiami /mi from their optimal values mi; 

these will be shown to be i. Hence we 

substitute Vi to obtain (2.2); the fac- 

tors of proportionality cancel. Finally (2.3) for 
generality and brevity we substitute the relative 

"sizes" U1 = Vi /EV1 i. 
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1 + L VC/(EVici)2 (EVi/mi) (Ecimi)/(EVii)2 

(2.1) 

(EVii /(EVii)2 (2.2) 

= (EUi /ki), (2.3) 

where U. = V're-/EV i and We 

take the k. and to be positive and finite. 

We have U. 1; and we may also use any conven- 

ient if we divide by Note that we 

need only the relative -values of k., and we can 
use with A any positive and finite constant. 
Furthermore, the form of (2.3) shows that the ki 
may be replaced by their reciprocals; they may 
refer to ratios of oversampling, as well as 
undersampling. With this flexibility we can use 
min(ki) = 1, as we do in Table 4.1 for conven- 
ience. 

The minimal value of 1 for (2.3) is obtainer 
with all Ki = k* equal. This may appear obvious 
or seen with the Lagrange Identity in (5.1). 

Examples may be useful here. 
(a) Consider the variance of the mean 

for two strata where W1 = 0.2, W2 = 0.8, S2 = 

S 2, and = =c. Then Ui = 

and U 
i 
:U 

2 
1 :4. 

This implies (5.3) that optimal allocation of 
sample sizes should be in the ratio of stratum 
sizes Wi, hence m2 = samples of equal 

sizes, m2, are taken, this implies a depar- 

ture factor of 4; we can use simply 1 and 

k 4. The consequent relative loss L would be 
given by (2.3) as 1 + L = (0.2.1 + 0.8.1/4) 
(0.2.1 + 0.8.4) 1.360. 

(b) To illustrate the effect of the Ui on the 

loss L: suppose now Si = 4S2, and 4c2. 

Since S1 /c1 S2 /c2, optimal allocation is 

still 1:4. But now = 

hence U1 = U2 = 0.5. Therefore the relative 

loss L from equal sample sizes now would be 
given by 1 + L 

(0.5.1 + 0.5.1/4)(0.5.1 + 0.5.4) = 1.5625. 

(c) To illustrate a conflict in allocation: 

suppose that as in (a) S2 and = c2, but 

that now we want to minimize the variance of the 

difference of means (51 - 52). Now U1 = U2 = 

0.5. Optimal allocation is at = m2. Depar- 

ture from this in the ratio 1:4 to satisfy (a) 

would result in 1 + L = 

(0.5.1 + 0.5.4)(0.5.1 + 0.5.1/4) = 1.5625. 



Note that these answers can also be found in 
Table 4.1 in column K = 4 for relative depar- 

based on 

tures. The size U of one component is 0.2 for 
(a), and 0.5 for both (b) and (c), in the top 
two rows. Results for (a) and (c) illustrate 
common conflicts between totals and domains, 
treated in Section 7F, and in Table 7.2A. 

The weights U are convenient for design; 

population parameters, we may call them 
population weights. However, when dealing with 
sample results it may be more convenient to use 
sample weights, based on sample sizes: 
u. = U./k.. Then (2.3) may be written as: 

1 L (£iii) 

= 1 + (£uik (2) = 1 + 

= 1 + £ui(ki /k - 1)2 

= 1 + E(ki /k - 1)2 mici /£mici. 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

is the relative variance of the ki with 

sample weights ui around their mean = Euiki 

= 1 /Eu. Here larger ki >1 represent larger weights 

to compensate for undersampling proportionately to 
their reciprocals. The = /ki are proportion- 

al to because the Ui = 

3. ON PROXIMAL ALLOCATION 

Extreme departures from optimal values of m. 
can result in large relative losses measured in 
either cost or variance. However, small or even 
moderate departures from the optimal lead only 
to negligible or small relative losses. These 
vague precepts of practicing statisticians are 
given formal and practical expressions (2.4 - 2.7) 

in terms of the relative loss (L) compared to op- 
timal allocation. 

When the frequencies for the are given or 
estimated in sample proportions u., then (2.5 - 

2.7) yield readily the loss L in terms of the rel- 
variance of the ki values. One of these for- 

mulas may be most convenient for judging the 
losses from actual sample results. 

However, for comparing designs of planned 
samples the frequencies may be more conveniently 
stated in terms of the population weights U.. 
Formula (2.3) can be readily computed for moderate 

numbers of components. Furthermore, the simple 
models of Table often give instant answers 
for approximate distributions. I have often found 
these answers close and adequate for planning 
designs. 

Computations of the relative loss L in our 
formulas and tables take account of the factors V 
and C in the minimized function VC, but they neg- 
lect the constant Vo or Co in the total variance 

and cost (1.1 and 1.2). However this neglect may 
be corrected with translations of L into L' that 

does take into account the constant factors V 
and Co. If Vmin is the optimal V for fixed Cf 

then the ratio of the attained proximal variance 
to the optimal variance is 
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(1 

V +V = 1 + L /(1 +Vo /Vmin)= 1 + L'. 
min o 

(3.1) 

Thus the adjusted actual relative loss L' differs 
from that indicated by L; since V is often nega- 
tive, L' can be somewhat greater &han L. For a 

Cmin 
found for a fixed Vf, the adjusted relative 

loss may be somewhat less than L, due to a 
positive Co in 

L' = L/(1 + Co/Cmin) (3.2) 

4. TABLES OF LOSSES FOR MODEL DISTRIBUTIONS 

For a variety of simple models we can give 
instant answers about expected losses. Actual 
population distributions can usually be matched 
against one of these models so as to provide use- 
ful approximations of the expected losses. 

The losses are given in terms of departures 
ki from optimal allocations for the relative 
weights U. in the models, and the ki range from 

hin(ki) 1 to max(k ) = K. The simplest model 

consists of two components U and (1 -U), where the 
relative departures from optimal sample sizes are 
in the ratio ki :k2 = 1:K. The loss for two com- 
ponents may be expressed (7.4) as 

L = U(1- U)(K- 1)2 /K. (4.1) 

The dichotomous models represent maximal 
Losses for ranges of departure fixed at 1 to K. 
Thus losses for large values of K are much 
greater in the top three rows of Table 4.1 than 
further down where five other models are shown. 

The five models represent diverse frequen- 
cy distributions for the population weights U.; 
and for each model both discrete and continuous 
versions are shown. In the discrete versions the 
relative departures ki take K integral values 

from 1 to K, and the relative weights Ui are 

concentrated at those values. In continuous ver- 
sions the departures ki and relative weights Ui 

vary continuously from 1 to K. Frequencies are 
divided by their sums to produce relative fre- 
quencies U4. 

Noteithat the loss L is both very small and 
uniform for all models for small K; for 
K = 1.3 Ld = .017 and Lc .006, and for 

K = 1.5 Ld = .04 and Lc = .014. (Note that for 

Ld the k. take only two values 1 and K = 1.3 or 

1.5). From K = 2 to about K = 5 the losses are 
moderate and fairly similar for the five models. 
The L are lower than the Ld, though in an 
irreglar ratio. Below K = 10 we can make fairly 
good guesses about L just from the range 1 to K, 
without knowing much about the U. -- if this is 
not dichotomous or U- shaped. 

However beyond K = 10 the losses L increase 
and diverge. Three of the models show rather 
similar losses, but for the model k, the 

losses are much larger. And this model may often 
resemble actual frequencies. The fifth has much 
lower losses, but it is not realistic, I think. 



Table 4.1 Relative Losses (L) for 6 Models of Population Weights (114); for Discrete and 
Continuous (Lr) Weights: for Relative Departures (ki) in Range from 1 to-K. 

Models 1.3 1.5 2 3 4 5 10 20 50 100 500 1000 

Dichotomous U(1 -U) 
(0.5)(0.5) 
(0.2)(0.8) 

(0.1)(0.9) 

Rectangular Ld 

Linear Decrease, 

Ui K+1 -k c 

Hyperbolic Dec% Ld 

Ui 1 /ki 

Quadratic Deer. 

1 
/k2 

Lc 

Linea. 1ncriase 

Ui 

.017 

.011 

.006 

.017* 

.006 

.017* 

.006 

.017* 

.006 

.016* 

.006 

.01i* 

.006 

.042 

.027 

.015 

.042* 

.014 

.040* 

.014 

.040* 

.014 

.036* 

.014 

.040v 

.013 

.125 

.080 

.045 

.125* 

.040 

.ill* 

.040 

.111* 

.041 

.0 

.040 

.111* 

.037 

.333 

.213 

.120 

.222 

.099 

.203 

.097 

.215 

.103 

.150 

.099 

.167 

.003 

.562 

.360 

.202 

.302 

.155 

.283 

.153 

.3]2 

.171 

.2]] 

.155 

.200 

.120 

.800 

.512 

.288 

.370 

.207 

.353 

.205 

.404 

.235 

.264 

.207 

.222 

.148 

2.025 

1.296 
.729- 

.611 

.407 

.616 

.409 

.807 

.528 

.460 

.407 

.273 

.223 

4.512 
2.888 
1.624 

.889 

.656 

.940 

.630 

1.466 
1.011 

.696 

.656 

12.005 
7.683 
4.322 

1.2 °5 

1.036 

1.437 

1.127 

3.014 
2.138 

7.048 

1.036 

.320 

.:308 

24.50 124.5 
15.68 
8.82 

1.620 
1.349 

1.917 
1.514 

5.076 
3.C21 

1.333 

1.349 

.327 

.37_0 

79.7 

44.8 

2.403 
2.120 

2.879 
2.507 

16.802 
11.998 

2.026 
2.120 

0.330 
0.331 

249.5 

159.7 
89.8 

2.746 
2.461 

3.333 
2.956 

28.342 
19.915 

2.331 
2.461 

0.333 
0.332 

Dichotomous 1 + L 1 + U(1- U)(K -1)2 /K 

Discrete 1 + Ld = (EUiki)(EUi /ki), with ki = 1,2,3,...K 

Continuous 1 + Lc .Uk.dk.f(U /k)dk, with 1 < k < K. 

Only 2 Values, 1 and K, were used for Ld for K = 1.3, 1.5 and 2 

From the models one can also make conjec- 
tures about actual distributions that differ 
somewhat from them. For example, a rectangular 
distribution for integral values of ki from 1 to 

5 has Ld = 0.370; more than 5 values evenly 

spaced within the same range to 1 to 5 would have 
a loss between that value and the continuous loss 
L .207. On the other hand for only three 
values of ki from 1 to 5 and 1/3, the loss 

(actually 0.533) is above 0.370, but below the di- 
chotomous value of 0.800 in Table 4.1. 

When sample weights ui = Ui /ki seem more 

convenient, the relative loss L may be estimated 
by the relvariance of the ki with weights ui 
(2.7). Formulas and tables can be constructed for 
such relvariancrs, if we begin with the means M 
and variances a of convenient distributions from 
0 to 1 [Kish, 1965, p.262]. To obtain the relvar- 
iances those variances are multiplied by the 

(range)2 = - 1)2 and divided by the new 

(mean)2 = [M(K - 1) + 1]2; thus C2 - 1)2/ 
[M(K - 1) + 112. 

5. ON OPTIMAL ALLOCATION 

The Lagrange identity is a basic tool of 
great utility, and it may be stated here simply. 
Assume xi and y4(i 1,2,...n) finite and real; 
but here we need only nonnegative values. Then 

(rxi)(Eyi) = Ex! + E xi 
i 

= Ex. 
yi 

+ E E xiyix.y 
j J 
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= 
(5.1) 

The second term has a minimum of 0, when 
yi = Fx, F constant. The first term alone is the 

lower bound of the Cauchy - Schwartz inequality. 

If we take in (5.1) xi = r(Ui /ki and 

yi = = kixi we now rewrite (2.3) as 

1 + L (EUiki)(EUiki) EyiExi 

1 + E kiki (ki - k ) 
2 

, 

i 

with (Exiyi)2 (EUi)2 = 1. The minimal value is 

1, when the second term is 0, because all ki are 
equal. 

Now let xi /mi) and (cimi), with 

i<j 
(5.1') 

Vi and c as assumed parameters and m as var- 

iables (all > 0). The minimal value of 

VC = (EVi (EVici)2; 

(5.2) 
a Cauchy - Schwartz inequality is obtained when 

= /mi) . 

Then 
/moi (5.3) 

are the optimal values of the mi that obtain the 

minimal VC = (EVi i)2. (5.3') 



The constant F can be determined from 
either Cf or Vf fixed. With Cf = Ecimi = FEVi 

uses F = Cf /EVi i. For Vf = EVi /mi note 

that Vi 
= 

FVi 
/mi 

and EVi 
FVf' 

hence F (EVi 
/Vf. 

6. MULTIPURPOSE ALLOCATION 

Sample surveys are typically multipurpose 
in nature, and it seems imperative to extend the 
methods of allocation to multipurpose designs. 
For lack of these methods univariate allocation 
dominates our literature and theory of sampling; 
practical work is also affected, but less often. 
The methods for optimization and proximization 
developed here seem particularly adaptabl to 

multipurpose design. The general form EV1 /mi 
for variances can serve well the many purposes 
of a sample survey; for the gth purpose the var- 
iance will be denoted by /m.. 

The many purposes o a single survey may 
have several sources. (1) A single variable 
may result in several statistics; e.g. the mean 
and median of incomes can benefit from different 
allocations [Kish, 1961]. (2) Most surveys ob- 
tain results for several variables on a single 
subject. (3) Furthermore, some surveys are 
multisubject in character; e.g. with economic, 
demographic, social variables. (4) Results for 
subclasses and for their comparisons may be as 
important as results based on the entire sample. 
Designs for subclasses often point to different 
designs and allocations than those for the entire 
sample. (5) The common but neglected conflict 
between designs for comparisons between domain 
means and for the combined mean for the entire 
sample is developed in Section 7F. 

Su2pose a sample is allocated optimally for 
variate y' with m' proportional to Vi/ , but op- 
timal allocation tor another variate y would be 

The loss incurred for can be mea- 
sured with the departures ki mi = 

(Vi /Vi)( and with weights = 

/EV in formula (2.3). We are mostly 

concerned with allocation of the m within one 
survey sample, so that = Then the loss 

function for due to optimization for ÿ' may be 
represented by 

1+ L (mi) (6.1) 

V 
2 

EVi EVi 

This may be regarded as the relvariance of k = 
Vi /Vi with weights u = Viii (2.7). 

Often the 

cost factors are constant or disregarded, and (6.1) 

has a particularly simple form 

L(mi) = E(Vi /EVi)2 /(Vi /EVi (6.1') 

If the mi allocated for one survey with 

are used for another with then we rewrite 
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(6.1), with in place of Vi, as 

1 + L(mi) =(EVi ) /(EViC1)2.(6.2) 

Now consider a loss function for several 
variates indexed with g(= 1, 2, 3...). The loss 
function, for a fixed cost Cf = Ecimi, may be ex- 

pressed for each as 

1 + L = (EVg2 /mi) 

where the denominator denotes the minimal var- 
iance attainable and computed for the gth var - 
iate. Assign the weights Ig (EIg = 1) to de- 

note the relative importance of the lost pre- 
cision on the gth variate. Then consider the 
total expected loss as a linear function of the 
quadratic loss functions (for a fixed set of mi) 

of the variances 

1 + L(mi) = EI (1 + L) = 1 + 
. 

= EI Vgi/mi 

g Vgmin 

V 
g gmin i 

(6.3) 

where = EI V 2/V in Changing the order of 

summation permits defining this ith component 
that can be computed. For the multipurpose 
joint allocation we may compute (5.3) the 

** 
optimal = f and (6.4) i EZc 

1 + L(mi) = 
Vmin 

(EZi 
)2Af 

(6.5) 

From the multipurpose optimal allocations 
m we may compute the loss function 1 * *) 

for the gth variate considered separately. For 
each of these we can use (6.1) with Vi = V 

V' = Zi, kgi = 
Vgi 

/Zi and Ugi V 
gi Vi /EVgi 

These may be averaged with the weights I to ob- 
tain the oint loss function (6.3) of g 
1 + L(mi* * ) with the multipurpose optimal allo- 
cations m 

This, however, may be obtained more 
directly from (6.4) or (6.5). Thus 

Z 
2 

+ L(mi *) = > = (iZi i)2 /Cf 

2 2 

4E 
C f g gmin . 

When we accept (from 5.2) 
n 

=(EVgi )2 we obtain a simpler form, 

(6.6) 



because 
= (Vgi /EVgiIi)2 

Thus the jointly determined minimal loss func- 
tion becomes 

1 + L(mi *) _ 
i 

U 

The minimal and optimal values may be un- 
obtainable, due chiefly to the constraints 

< (Section 5). In that case the above loss 

function overestimates the losses incurred over 
obtainable values of Note also that using 

these leads to Z i EI U 2] -f hence to 

g g 

** 
. Cf . 

optimal (m ) 
i E[EIgUgi] 

(6.7) 

g 

These can be seen applied in 7F to the im- 
portant and frequent conflict between allocations 
for weighted totals and comparisons of domains. 
Two examples are shown in Table 7.2. Note in 
the last column of 7.2B how encouragingly insen- 
sitive are the values of (6.8) for moderate dif- 
ferences in the assignments of 

The weighted mean of relative quadratic 
losses (6.3) is a modified version of a function 
proposed by Dalenius (1957, Ch.9). Another ver- 
sion (Yates, 1960, Cochran, 1963) uses 

the weighted average of variances. 

Our (6.3) can be easily adapted by using 

T2 = Ely i instead of Z2; in this formulation 

g 
the weights Ig = Ig /Vgmin include the minimal 

variances. This may appear simpler, but it is 
less explicit. 

The optimal allocation of / can 
also be obtained with Lagrange Multipliers ap- 
plied to the function 

F(mi) 
Vgi /miVpmin 

(6.9) 
+ ÀEc.m. 

(6.8) 

With Lagrange Multipliers we also investi- 
gatedtwo other loss functions: the product, 

11(1 + and the sum of the relative precisions, 

[E(1 + Lg) -1] -1. But the results seem 

less crucial than good choices for the weights Ig 
of relative importance. 

Our methods here aim to minimize the first 
term of V + Vo for fixed In situations where 

Vo is considerable, the actual loss should be 

modified to L' = L /(1 + Vo n), as noted in 

Section 3. Furthermore, I consider fixing Cf 

more practical than trying to fix values for a 
set of Vg and then to minimize This problem 
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seems to have been solved with "convex program- 
ming" on several separate occasions, [Srikantan, 

196 ?, and Huddleston, 1970, were not the first]; 
but I do not find this approach useful. 

7. Var(i) = EVi /mi + Vo IN SEVERAL APPLICATIONS 

A) Stratified Sampling: Vi = WiSi 

opt WiSi 
Mi p i 

B) Multistage Random Selection of Equal Clusters: 

2 stages - /B Sá 

a + A 

S 
2 

opt b* 
Sb 

) c Sb 

=a,m2_ ab, m3=abc 

3 stages S2 - 
82,B 

Sb S S 
a + ab abc 

C) Two -Phase Sampling: Cost = Ecimi + + Co 

for Stratification: 

E(WiSi)2 EW( - )2 
E 
(W S )2 EWh(i - 

EMi 

(EWiSi)2 /Emi + EWi(i )2 when 
miaWiSi 

for Regression: S2(1 - R2) + R2S2 
Emi 

D) Subsampling (1-P)m/k of Nonresponses: 

Cost (co/P + c)Pm + cq(1-P)m/k 

(1 - P)2S2 

Pm (1 - P)m/k 

q 
1/2 

opt k 
o/P + c 

E) Weights in Estimation: EWi = EWi = 1 

V2 = opt /ai 
Vmin = 

1 /El 

1 + L = V2 = EWi 
/Wi 

L = EWi - 1)2 

Wi 



7F. Allocation Conflict Between Totals and 
Independent Domains 

Serious conflict often exists between re- 
ducing the variance for the combined mean 

and equal precision desired for the means of H 

independent domains that differ greatly in rela- 
tive sizes = 1). The domains may be the 

regions or provinces of a country, etc. This com- 
mon example of multipurpose allocation deserves 
special attention. 

The combined mean variance Vc = /mi is 

minimal when the optimal . However 

mdi 
i 

are optimal for obtaining equal pre- 

cision for each of the H domain means; also to 
obtain equal precision for the -1)/2 possible 
comparisons of domain means. Thus we can denote 
an average domain variance 

Vd (ESi /mi) /H2 for the variance of /H. The 

conflict between the purposes is represented in 
the above two optimal values for mi by the pres- 

ence of the weights Wi for the combined mean, 

their absence for the domain means. Thus the 
loss function (2.3) for the combined mean, due 

to allocation mi 
i 

has the departures 

kci mi /mi = Wi, and the weights 

The loss function for the average domain means, 

due to allocations S1/ has the depar- 

tures kdi 1 and the weights UdiSi 
To see clearly the effects of variation 

in the domain sizes Wi, we make some simplifying 
assumptions that are often approximated in 
practical situations. Assume that the Si incor- 

porate the effects of complex designs, and that 
they are constant across domains, as are the ci. 

Further,, suppose that m* <M in all domains. We 

shall also neglect effects of the constants Vo 
and Co on the loss functions. 

Under these conditions we may omit, for 
brevity, the constants S2 and c from the formules, 
and we Allocate the total sample size m = Emi 

among the domains. For the optimal 

mi mWi, with departures kci mi /mi mWi /mi 

and weights Uci = Wi, the loss function 1 + Lc 

= m£Wi /mi is minimal at mVcmin 1. 

For /H the optimal mdi m /H, weights Udi 
= 

1 /H, with departures kdi m and the loss 

function 1 + Ld /mi the minimal at 

1 also. 

In Table 7.1 for loss functions (1 + Lc) 

the minimal value 1 appears with miWi 
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for EWiyi, and with /H for Eyi /H. The other 

allocations produce relative losses (L >0) that 

increase with diversity among the relative sizes 

and C2 denotes their relative variance, 

H2Var(Wi). 

Jointly for the two purposes, we can find 

optimal allocation and the loss function with 

(6.3).. For any allocation mi, the joint loss 

function is 

1 + L (mi) = IcmEWi/mi + 2E1/mi 

= mE 
+ /mi 

= mH [IcDi + Id]/mi 

= mN 2E[IcNi IdN2]/mí 
i 

= mit2 /mi. (7.23) 

Here <Ic <1 is the relative importance for the 

combined mean variance and Id = 1 - for the 

mean domain variance. We may find it convenient 

to use D = HWi with mean = 1, or Ni 

when these denote domain sizes. 
We find the joint optimal allocations 

mi mti /Eti where the 

ti = + IdH 2) = (IcDi + Id) /H 

= + IdÑ2) /N. 

** 
The mi may be found simply with (5.3) but also 

as an illustration of (6.8). 
The multipurpose allocation mi can also 

be shown (5.2) to produce the multipurpose mini- 

mal variance 

Vmin (Eti)2/m. 
(7.24) 

When we use the multipurpose optimal 

m 
i 

* 
we can determine the loss functions 

(1 + incurred for the variances of and 

/H; we use (6.1) or (6.2) with 

/ti 

and k 
di /Vial 

/Hti respectively. 

These (1 + L) are shown on the bottom row of 
Table 7.1. The last column shows the effects of 

the three different allocations on the joint 
multipurpose loss function 1 + Lj(mi). 

Two numerical problems illustrate the 

method in Table 7.2. In A, for two domains 

having sizes W1 /W9 = 4:1 are shown the loss func- 

tions for three purposes --- total, domain and 

joint - -- under diverse allocations. In B the 

method is applied to the 133 countries of the 

world, omitting the four largest, over 200 

millions, and a few smallest, under 0.2 millions. 

Including them would be more dramatic but less 

realistic. 



Conflict of Combined Mean (EWiyi) and Average Domain Mean /H) 

(Si and ci are assumed constant and omitted.) 

Table 7.1 Loss Function (1 + L) for the Combined Mean, for the Average Domain Mean, and 
for a Weighted Joint Function. 

Note t = -(I cWi + IdH 2) = r(IcD2 + Id) /H 

(1 + L) = mV2 

Loss Functions 

mEW12/mi 

(1 + L)for 

IcEWiÿi + IdEyi/H 

mEti2/mi 

Allocation of 

m/H 

mti/Eti 

1 

= + Cw2 

(Ewi2/ti)(Eti) 

2E1/Wi 

1 

H-2(E1/ti)(Eti) 

Ic + 

IcHEWi + Id 1 

(Eti)2 

Table 7.2 Loss Functioned (1 + L) for Two Populations 

(A) 

(1 + L) 

Allocations mj EyiJ2 Joint 

1(1 + L) for 133 countries: 0.2 to 100 mm 

/133 1:1 /Id 

mW 

m/li 

2+H 2) 

+ H-2) 

+ H-2) 

2) 

1 1.56 1.28 

1.36 1 1.18 

1.08 1.125 1.102 

1.116 1.080 1.098 

1 6.86 

3.34 1 

1.35 1.54 

1.31 1.28 

1.47 1.17 

1.20 1.44 

1.12 1.66 

3.93 

2.17 

1.44 

1.295 

(1.32) 1.27 

(1.32) 1.28 

(1.39) 1.23 

In (A) there are two strata and domains (W1 0.8 and W2 0.2); note that the alloca- 

tion does almost as well for the joint loss as the optimal. 

In (B) we have the populations of 133 countries, ranging in size from 0.2 to over 100 

millions, a range of 500 in relative sizes. From this problem of allocation (for the World 

Fertility Survey) we omitted, for practical reasons, the four largest countries and a few 
under 0.2 millions. Their inclusion would raise the variance of relative sizes, Wi, from 
2.5 to 12, and would make the results more dramatic. Note that the allocation reduces 
lossgs quite well. Some compromise is better than none. But the optimal allocation, 

+ H- ), is considerably better. Different values of Ic /Iá= 1/2,2/1 and 4/1) increase 

slightly the variance of the joint loss function with (1:1) weights; but they remain steady 

for joint loss functions with their own weights Ic /Id:l. 
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